Understand 10GBASE-T in Depth

Today, the Ethernet cabling system market is dominated by 10G links. Although fiber optic cables become popular with the advantages of high data transmission rate and low latency, many IT departments still use copper cabling for switch-to-switch or switch-to-server connections in 10G Ethernet applications. As one major copper cabling technology applied for 10GbE, 10GBASE-T was released by IEEE 802.3an in 2006 which specifies 10Gbps data transmission over four-pair copper cabling. Then, how much do you know about it? This article will guide you to understand 10GBASE-T in depth from five aspects—reach, backward compatibility, power consumption, latency and cost.

Reach

10GBASE-T is able to reach transmission distances up to 100 meters, and Cat6, Cat6a, Cat7, these three types of copper cables are commonly used with the 10GBASE-T standard. Cat6 bulk cable can perform at the bandwidth of up to 250 MHz, but it may reach only 55 meters at the speed of 10Gbps and 33 meters in high crosstalk conditions; Cat6a bulk cable is defined at frequencies up to 500MHz, and it can support the transmission distance over 100 meters at the speed of 10Gbps; Cat7 bulk cable can deliver 10G performance up to 600 MHz and at a distance of up to 100 meters. Here is a figure of a roll of cat6 cable.

roll of cat6 cable

Backward Compatibility

We know that Cat6 bulk cable, Cat6a bulk cable and Cat7 bulk cable are backward compatible with the Cat5 and Cat5e bulk cable standards, so these three types of cables can also be used for 10BASE-T, 100BASE-T and 1000BASE-T applications, though a little overqualified. Moreover, 10GBASE-T is backward compatible with 1000BAE-T. Therefore, 10GBASE-T can be deployed in preceding 1GbE switch infrastructures in data centers that are cabled with Cat6, Cat6a or Cat7 cabling. This enables data center managers to save costs while upgrading the network to 10GbE.

Power Consumption

According to the study, the early physical layer interface chips (PHYs) consumed too much power for widespread adoption. The original gigabit chips were roughly 6.5 Warts per port. With the process of improvements, the chips are now under 1 Wart per port. In addition, the PHYs benefit a lot from the latest manufacturing processes in 10GBASE-T. And the technology will continue to reduce the power consumption of PHYs.

Latency

Depending on Ethernet packet size, the latency for 1000BASE-T ranges from below 1μs to over 12μs, while 10GBASE-T’s latency ranges from just 1μs to less than 4μs—a much tighten latency range. And with a larger packet size, 10GBASE-T’s overall throughput offers an advantage over 1000BASE-T, and the latency for 10GBASE-T is more than three times lower than that of 1000BASE-T. The 1μs latency of 10GBASE-T is of no consequence to most users. Only the most latent-sensitive applications such as High Performance Computer (HPC) or high frequency trading systems would be affected by normal 10GbE latency.

Cost

As for cost, copper cables are cheaper, which is one reason for their wide applications. Take cables of FS.COM for example, Cat6 cable 1000 ft is about US$ 130.00; Cat6a cable 1000 ft is about US$ 180.00; Cat7 cable 305m is about US$ 600.00. Though 10G SFP+ DAC Twinax Cable is about US$ 42.00, from the perspective of structured cabling, it has a limited distance (up to 10m), and is not as flexible or cost-effective as 10GBASE-T.

Conclusion

From the above content, we can learn that 10GBASE-T offers the lowest cost media, and is backward compatible with preceding 1GbE networks. It can not only satisfy the increased bandwidth needs, but also greatly simplify the network and lower power consumption by replacing multiple gigabit connections with a single or dual-port 10GbE connection. Hence, it is an idea choice for 10G Ethernet copper cabling. And I hope after reading this article, you can have a better understanding on 10GBASE-T. FS.COM provides cost-effective solution for your 10BASE-T Ethernet network deployment. If you want to know more details, please visit our site.

Cat6 VS. Cat6a

As the data speed increases from Fast Ethernet to Gigabit Ethernet, cables for the network connection are also required to be improved. Cat6 and Cat6a are two kinds of copper cables for Gigabit Ethernet. Do you know which one you should use, Cat6 or Cat6a? Could these two types replace each other? Now this article will tell the difference from five aspects: crosstalk, thickness, transmission distance, cost and durability. First, let’s come to the overview of Cat6 and Cat6a cables.

Overview of Cat6 and Cat6a

Cat6 is a standardized twisted pair cable for Ethernet and it is backward compatible with the Cat3, Cat5 and Cat5e cable standards. In addition, Cat6 provides performance of up to 250 MHz and is suitable for 10BASE-T, 100BASE-TX (Fast Ethernet), 1000BASE-T/1000BASE-TX (Gigabit Ethernet), and 10GBASE-T (10-Gigabit Ethernet). Cat6a is the “Augmented” version of Cat6 and offers better performance. It is defined at frequencies up to 500MHz—twice than that of Cat6, and it is popular among 10G Ethernet applications. Here is a figure of Cat6 and Cat6a cable.

Cat6 vs. Cat6a

Comparison Between Cat6 and Cat6a

The name of Cat6a indicates that it was created to further improve on the performance of Cat6 for Ethernet cables. So what are the differences between them? This part will focus on the comparison between Cat6 and Cat6a cables from from four aspects: crosstalk, thickness, transmission distance and cost.

Crosstalk

We know that Cat6 features more stringent specifications for crosstalk and system noise, while Cat6a cable is stricter when it comes to shielding and protection against alien crosstalk. Crosstalk occurs when the signal from one cable leaks into another. This can distort the signal through the introduction of noise and force the network devices to work at a slower speed. Because of this, Cat6a cables would work better in situations where it is to be bundled with a lot of other cables.

Thickness

Another identifying characteristic of the Cat6a cable is its thickness. Cat6 looks just like the Cat5 and Cat5e cables that preceded it. Cat6 cable manufacturers had to come up with approaches to adjust to the stricter alien crosstalk shielding, thereby making it thicker with others adopting odd shapes. While Cat6a cable is slightly thicker than Cat6 cable.

Transmission Distance

Cat6 cable can reach 100 meters for slower network speeds (up to 1,000 Mbps) and higher network speeds over short distances. But it can support only 55 meters at the speed of 10Gbps and 33 meters in high crosstalk conditions. While Cat6a cables can support the distance over 100 meters at the speed of 10Gbps.

Cost

The cost of Cat6a is higher than that of Cat6. Take Fiberstore’s cables as an example, bulk Cat6 cable 1000ft(305m) is 130.00 US$, while bulk Cat6a cable 1000ft(305m) is 180.00 US$. The more cables you purchase, the bigger the price difference will be. And the price difference is not only caused by the cable. Other matched connection components should also be considered.

Durability

As mentioned above, Cat6a cable is thicker and heavier than Cat6 cable. Cable trays can not hold as many Cat6a cables as Cat6 cables. When laying cables on the trays, you should better not bend cables too much as this can damage the wiring and influence network performance. The minimum radius that a cable can be bent without damaging is called the bend radius. The lower the bend radius, the more you can bend the cable. As Cat6a cable is bulkier than Cat6, Cat6a cable has a larger bend radius than Cat6 cable.

Conclusion

From this article, you can make a clear identification of Cat6 and Cat6a cables. When you plan to purchase this copper cable, you need to consider their differences like crosstalk, thickness, transmission distance, cost and durability, etc. Hope you can choose the suitable cable and build a high performance network.